
Smarter Scaling:
Predictive Autoscaling for Kubernetes

Maurizio Giacobbe∗, Sarah Zanafi†, Jiregna Abdissa Olana†, Antonio Puliafito†‡

∗Dept. of Math., Computer, Physical and Earth Sciences, University of Messina, Messina, Italy

†Department of Engineering, University of Messina, Messina, Italy

‡Consorzio Interuniversitario Nazionale per l’Informatica (CINI), Rome, Italy

{mgiacobbe, szanafi, jiolana, apuliafito}@unime.it
0000-0001-6178-7132 (Giacobbe), 0000-0002-0126-7837 (Zanafi)

0009-0002-2220-1359 (Olana) 0000-0003-0385-2711 (Puliafito)

Abstract—Ensuring efficient and scalable computing is critical
for real-time data processing, resource optimization, and service
reliability. Effective load balancing mechanisms are necessary to
manage workload distribution, minimize latency, and maintain
system performance in highly dynamic edge computing envi-
ronments. This paper proposes a hybrid autoscaling approach
that enhances the default HorizontalPodAutoscaler (HPA) by
integrating predictive scaling techniques. Results demonstrate the
effectiveness of the predictive autoscaling model compared with
fixed threshold-based and traditional HPA.

Index Terms—Edge-cloud continuum, IoT, kubernetes, load
balancing, predictive autoscaling, scalability

I. INTRODUCTION

The consolidation of IoT-as-a-Service (IoTaaS) [1] is trans-
forming the landscape of smart cities, enabling advanced urban
services through the seamless integration of cloud computing
and edge computing. Kubernetes has emerged as a de facto
standard for orchestrating containerized workloads in such dis-
tributed scenarios. In Kubernetes, a HorizontalPodAutoscaler
(HPA) (Figure 1) automatically updates a workload resource
in which a pod is the fundamental unit as a set of running
containers in a cluster.

II. BACKGROUND AND RELATED WORK

Load balancing is a critical challenge that ensures the
optimal allocation of computational tasks between edge and
cloud resources, especially for latency sensitive applications
operating in Kubernetes-based edge cloud environments [2].

Traditional cloud-centric models face limitations in han-
dling the dynamic and heterogeneous nature of computational
workloads. Therefore, it is essential to explore adaptive load
balancing mechanisms [3] that account for factors such as

This work was partially supported by the European Union - Next Generation
EU under the Italian National Recovery and Resilience Plan (NRRP), Mission
4, Component 2, Investment 1.3, project SecCO, CUP D33C22001300002,
and project 3D-SEECSDE, CUP J33C22002810001, partnership on “SEcurity
and RIghts in the CyberSpace” (PE00000014 - program “SERICS”).

Fig. 1. Overview of the typical autoscaling of pods in Kubernetes.

network bandwidth, computational capacity, and geographical
distribution of devices [4].

Starting from the native HPA mechanism, we propose a
hybrid autoscaling approach that integrates predictive scaling
techniques alongside HPA to anticipate workload fluctuations
and improve system responsiveness. Through an experimental
use case, we assess the effectiveness of this combined strategy
in managing workload distribution. The Pearson correlation
coefficient is used as a key metric to evaluate the alignment
between predicted and observed use of resources, offering
insight into the model’s reliability and the overall performance
of the system.

III. USE CASE

We consider a typical scenario of a distributed application
in a Kubernetes cluster of nodes.

A. Key Challenges

• Predictive autoscaling
• Gradual scaling process to avoid over-reaction
To address these challenges, we propose an approach that

combines predictive autoscaling with traditional HPA.



Figure 2 shows its operative positioning at the Workload
Autoscaling Layer in a Kubernetes stack.

Fig. 2. Predictive Autoscaling with HPA at the Workload Autoscaling Layer
in a Kubernetes stack

CPU load is used as a key parameter to control resource
allocation. The key idea is to predict future CPU load based on
historical CPU usage trends and adjust the number of resources
(e.g., pods) in advance to meet anticipated demand.

The predictive autoscaling process follows these steps:
(i) data collection, (ii) future load prediction, (iii) gradual
scaling, (iv) resource adjustment.

The number of pods is updated as:

Podsnew = max(1,min(max pods,Podscurrent +∆)) (1)

The relationship between CPU load and pod count is
modeled linearly:

NPOD(t) = α · LCPU(t) + β (2)

where α is the proportionality coefficient determining how
much each unit of CPU load affects the number of PODs,
and β is the constant term representing the base number of
PODs when the CPU load is zero. A threshold-based approach
adjusts pods based on load limits:

NPOD(t) =


N(t− 1) + ∆, L(t) > Lthresh

N(t− 1)−∆, L(t) < Llow

N(t− 1), otherwise
(3)

The correlation is quantified with the Pearson coefficient r,
indicating how closely pod count tracks CPU load.

CPU evolution is computed as:

CPUnew = max(0,min(100,CPUprevious +∆)) (4)

We implemented computational flows in Node-RED, as it
is commonly used on edge or gateway devices, enabling quick
adaptation from prototyping to deployment.

Figure 3 shows a 1-minute time slot of the real-time CPU
load (%), the predicted CPU load (%), the number of pods
allocated over time, and the respective Pearson coefficient
trend.

Fig. 3. Predictive Autoscaling with HPA in a Node-RED Dashboard

The analysis validates the effectiveness of predictive au-
toscaling models, which achieve a desirable trade-off between
responsiveness and stability by maintaining a strong but not
overly reactive correlation with system load.

IV. CONCLUSION AND FUTURE WORK

This study emphasizes a new autoscaling strategy that im-
proves Kubernetes’ HorizontalPodAutoscaler (HPA) by adding
predictive features to overcome the shortcomings of fixed
threshold-based methods in edge-cloud settings. The proposed
system ensures more stable, responsive, and efficient resource
allocation by gradually adjusting the number of pods. Future
developments will focus on validating the approach in real-
world, multi-cluster Kubernetes deployments. Additionally, we
plan to investigate more advanced forecasting techniques to
further improve accuracy and adaptability in dynamic edge-
cloud settings.

REFERENCES

[1] S. Zanafi, N. Aknin, M. Giacobbe, M. Scarpa and A. Puliafito, ”En-
abling Sustainable Smart Environments Using Fog Computing,” 2018
International Conference on Electronics, Control, Optimization and
Computer Science (ICECOCS), Kenitra, Morocco, 2018, pp. 1-6, doi:
10.1109/ICECOCS.2018.8610509.

[2] P. P S, R. K, A. Sharma, A. Temura, R. Shah and P. Tammana, ”DL3:
Adaptive Load Balancing for Latency-critical Edge Cloud Applica-
tions,” 2024 20th International Conference on Network and Service
Management (CNSM), Prague, Czech Republic, 2024, pp. 1-5, doi:
10.23919/CNSM62983.2024.10814405.

[3] J. Santos, T. Wauters, F. D. Turck and P. Steenkiste, ”Towards Optimal
Load Balancing in Multi-Zone Kubernetes Clusters via Reinforcement
Learning,” 2024 33rd International Conference on Computer Communi-
cations and Networks (ICCCN), Kailua-Kona, HI, USA, 2024, pp. 1-9,
doi: 10.1109/ICCCN61486.2024.10637606.

[4] Q. Liu, E. Haihong and M. Song, ”The Design of Multi-Metric Load
Balancer for Kubernetes,” 2020 International Conference on Inventive
Computation Technologies (ICICT), Coimbatore, India, 2020, pp. 1114-
1117, doi: 10.1109/ICICT48043.2020.9112373.


