
Managing Real-time Mobile Applications in
Reconfigurable Cloud-to-Things Systems

Marco Pettorali, Francesca Righetti, Carlo Vallati, and Giuseppe Anastasi

Dept. of Information Engineering, University of Pisa, Pisa, Italy, {name.surname}@unipi.it

Abstract—In future reconfigurable IoT systems, real-time mo-
bile applications characterized by different requirements will
coexist, and will be dynamically introduced or removed. This asks
for dynamic management mechanisms to ensure the requirements
of different real-time mobile applications, even when the system
configuration changes over time. In this paper, we propose
DJ-NECORA, an online algorithm for the joint allocation of
networking and computing resources in the Cloud-to-Things
Continuum that is capable of guaranteeing the requirements of
real-time applications and efficiently managing possible changes
in the system configuration. We evaluate DJ-NECORA through
simulation in a realistic scenario. The results show that DJ-
NECORA effectively handles application dynamics and, in some
scenarios, outperforms offline resource allocation solutions by
supporting 14% more nodes.

Index Terms—Cloud-to-Things Continuum, Real-time Apps,
Mobility, System Reconfigurability, Dynamic Resource Allocation

I. INTRODUCTION

The rapid proliferation of IoT devices and the growing de-
mand for real-time IoT applications in various domains, such
as smart cities, Industry 4.0, and smart healthcare, have driven
a shift from Cloud Computing to Edge Computing. Edge nodes
can be located at different levels between IoT devices (Things)
and the Cloud, giving rise to the so called Cloud-to-Things
Continuum (C2TC). Many real-time IoT applications involve
Mobile Nodes (MNs), like robots, autonomous vehicles, and
wearable devices, to ensure seamless operation of processes.

In future reconfigurable IoT systems, many real-time appli-
cations, with different characteristics and QoS requirements,
will co-exist. In addition, applications will be dynamically
introduced and removed. Guaranteeing the stringent require-
ments of real-time applications, in the presence of node
mobility and heterogeneous resources available in C2TC, is
already a challenging task [1]. Facing changes in the system
configuration, without service interruptions, adds more com-
plexity to the problem and requires dynamic mechanisms.

In this paper, we propose DJ-NECORA (Dynamic Joint
NEtwork and COmputing Resource Allocation), an online
algorithm for joint networking and computing resource allo-
cation in C2TC. It ensures real-time application requirements
while efficiently handling system reconfiguration. We evalu-
ated DJ-NECORA through simulations considering a specific
use case with eight different real-time applications. The re-
sults show that DJ-NECORA effectively manages application
reconfigurations, ensuring high adaptability. In some scenarios,
it outperforms a static optimal approach by supporting up to
14% more MNs.

application1application0

BR 0 BR 1 BR 2

Cloud Node
(CN)

Gateway (G)

MNMN

*

Fig. 1: Reference architecture of the C2TC system

II. SYSTEM MODEL

Fig. 1 shows the system architecture, which is distributed
across multiple layers and consists of Mobile Nodes (MNs),
Edge Nodes (ENs), comprising a set of Border Routers (BRs)
and a Gateway (G) enabling communication between BRs, and
Cloud Nodes (CNs). We assume that MNs lack computing
capabilities; therefore, all application processing is carried out
at a BR or CN. MNs move within an Area of Interest (AoI),
where they collect and transmit data to BRs via wireless links
(WL). BRs communicate with G through a wired backbone
(BB), which in turn connects to CNs via wired links (CL).
Each application Ap is characterized by: (i) process p to be
executed on a host h; (ii) Mp: memory required for p; (iii)
message generation period Tp; (iv) maximum tolerable delay
dp; (v) minimum required on-time ratio rp; (vi) number of
MNs mp associated with the application.

Each network link is modeled using a delay probability
distribution γlink

p,b (t), where link indicates the type of link
(WL, BB or CL). Given these distributions, the end-to-end
communication delay distribution γCOM

p,h (t) for a message gen-
erated by an MN and transmitted to a host h, can be computed
by convolving the distributions of the links along the path from
the MN to the host.

To model the processing time distribution, we introduce
the CPU share λ ∈ [0, 1] to represent the CPU fraction
allocated to a process on a host, and we model the execution
time probability distribution γEXE

p,h (t, λ) as a function of λ. In
addition, packets can experience queuing delays before being



processed. The queuing time is modeled through probability
γQUE
p,h,m(t) [1]. Hence, the total end-to-end delay γp,h(t, λ,m)

for an application Ap with m MNs, running process p on host
h with CPU share λ, is given by

γp,h(t, λ,m) = γCOM
p,h (t) ∗ γQUE

p,h,m(t) ∗ γEXE
p,h (t, λ) (1)

III. DYNAMIC RESOURCE ALLOCATION

The DJ-NECORA Algorithm is described in [2]. We pro-
vide below some design principles. Each application ap,
has two QoS requirements, namely a maximum tolerated
delay dp and a minimum on-time ratio rp, that must be
satisfied. To ensure these constraints, we define the function
MinCPUShare(p, h,m), which computes the minimum CPU
share that host h must allocate to the application to satisfy
both constraints. If host h cannot meet the QoS requirements,
MinCPUShare(p, h,m) returns a value greater than 1.

When a process requires more CPU resources than a single
host can provide, its MNs can be divided into multiple groups,
each assigned to a different host. The allocation of MNs among
different hosts follows a splitting policy. We consider the
following three splitting policies: No Splitting: MNs of the
same process are allocated on a single host; Lazy Splitting:
MNs of the same process are allocated on a single host until
its CPU capacity allows; then, incoming MNs will be assigned
to the next available host; Greedy Splitting: MNs of the same
process are allocated, individually, across multiple hosts. Our
algorithm also accounts for memory usage. When process p is
assigned to host h, its memory usage increases by Mp. If the
amount of requested memory exceeds the currently available
memory on h, p will not be allocated on that host.

When allocating a process, multiple hosts may meet its
QoS requirements. In such cases, a selection policy determines
the most suitable host. We consider the following well-known
policies: (i) First Fit; (ii) Next Fit; (iii) Best Fit); (iv) Worst
Fit; and (v) Random Fit.

IV. SIMULATION RESULTS

We simulated DJ-NECORA in a scenario with a deployment
area of 100x200 meters, three walls and an obstacle measuring
50x25 meters located in the bottom-left corner. The area is
covered by six BRs. MNs move along predefined linear paths,
such as robots following a track. The number and placement
of BRs were determined to provide complete coverage of the
area using genetic algorithm [1].

Fig. 2 compares static vs. dynamic allocation with different
selection policies. J-NECORA assumes global system knowl-
edge and provides an optimal allocation of MNs to cloud/edge
nodes. DJ-NECORA allocates slightly fewer MNs than J-
NECORA, due to the lack of a global view. The difference
is minimal, showing the effectiveness of DJ-NECORA.

Fig. 3 considers a situation where MNs join dynamically
(we use Lazy Splitting in these experiments, as it proved
to be more efficient [2]). Initially, only a fraction of MNs
is allocated, while the rest arrive randomly over time. The
initial fraction I varies from 0% (no MN initially allocated) to
100% (all MNs allocated from the start). The initial fraction

First-Fit Next-Fit Best-Fit Worst-Fit Random
Host selection policy

0

10

20

30

40

50

60

70

80

T
o
ta

l
M

N
s

a
ll
o
ca

te
d

Max MNs J-Necora

Fig. 2: Total MNs allocated by DJ-NECORA and J-NECORA

First-Fit Next-Fit Best-Fit Worst-Fit Random
Host selection policy

0

10

20

30

40

50

60

70

80

T
o
ta

l
M

N
s

a
ll
o
ca

te
d

I=0% I=50% I=100%

Fig. 3: Impact of the initial fraction of MNs allocated to
processes on the total number of MNs allocated. Lazy Splitting

significantly influences the total number of MNs accommo-
dated. When I = 0%, DJ-NECORA allocates fewer MNs
(around 18) compared to J-NECORA (51), due to the lack
of a global view and the higher likelihood of multiple splits
caused by the individual arrival of MNs. When I increases, DJ-
NECORA is able to allocate more MNs, gradually approaching
J-NECORA when I = 50% (around 40) and even surpassing
J-NECORA when I = 100% (around 58 MNs, i.e.,∼ 14%).
This highlights the effectiveness of the splitting approach.
By distributing MNs across multiple hosts, DJ-NECORA
overcomes the constraints of J-NECORA, resulting in more
efficient resource allocation.

V. CONCLUSIONS

In this paper, we have presented DJ-NECORA an algorithm
for the dynamic allocation of resources in C2TC, designed
for real-time mobile applications, in reconfigurable systems,
where new applications are added or removed at runtime and
MNs may join or leave dynamically. The results show that
DJ-NECORA can achieve better performance than a static
approach. As future work, we plan to evaluate DJ-NECORA in
scenarios with different mobility patterns and across different
wireless technologies (e.g., 5G, WiFi, and LoRaWAN).

REFERENCES

[1] M. Pettorali, F. Righetti, C. Vallati, S. K. Das, and G. Anastasi, “J-
necora: A framework for optimal resource allocation in cloud-edge-things
continuum for industrial applications with mobile nodes,” IEEE Internet
of Things Journal, 2025.

[2] ——, “Dynamic Resource Allocation in Cloud-to-Things Continuum for
Real-Time IoT Applications,” in IEEE International Workshop on Smart
Service Systems (SMARTSYS 2025), Cork, Ireland, June 2025.


