
Energy-Efficient Function Invocation Scheduling for
Sustainable Edge FaaS

Francesca Righetti1, Carlo Vallati1, Nicola Tonellotto1, Gabriele Russo Russo2, Valeria Cardellini2, Giuseppe Anastasi1
1Dep. of Information Engineering, University of Pisa, Pisa, Italy. E-mail: name.surname@unipi.it

2DICII, Tor Vergata University of Rome, Rome, Italy. E-mail: surname@ing.uniroma2.it

Abstract—Function-as-a-Service (FaaS) is emerging as a
lightweight computing model to deploy event-driven applications
in the edge-cloud continuum. However, sustainable deployment
of FaaS at the edge requires minimizing energy consumption
while maintaining Quality of Service (QoS). This paper presents
the Energy-Efficient Function Invocation Scheduling, E2FIS, a
scheduling algorithm for edge-based FaaS platforms formulated
as a Mixed Integer Linear Program (MILP) problem. E2FIS op-
timizes function-to-node assignments by consolidating workload
on energy-efficient nodes and powering off idle ones. Real-world
experiments show that E2FIS achieves up to 92% energy savings
compared to baseline strategies while preserving QoS.

Index Terms—Function-as-a-Service, Edge-Cloud Continuum,
Energy Efficiency, Scheduling.

I. INTRODUCTION

Function-as-a-Service (FaaS) has emerged as an effi-
cient paradigm for deploying applications composed of self-
contained functions triggered by events, offering the advantage
of simplified deployment without the burden of infrastructure
management. With the shift from centralized cloud comput-
ing to the edge-cloud continuum, there is a growing need
to bring FaaS capabilities at the edge, i.e., closer to data
sources and end-users. This transition enables lower latency
and greater responsiveness to end-users, but also introduces
new challenges. Edge nodes are heterogeneous and functions
with different execution deadlines and resource requirements
must be scheduled on nodes that can accommodate their
requirements. The growing demand for FaaS services and the
large-scale deployment of FaaS platforms across the edge-
cloud continuum place a strong emphasis on energy efficiency
in resource management to reduce operational costs and min-
imize environmental impact [1]. This requires balancing the
QoS compliance [2] with minimizing energy consumption to
ensure efficient and sustainable operations.

To achieve this, we proposed E2FIS: Energy-Efficient
Function Invocation Scheduling, a framework for optimizing
resource management in edge FaaS platforms, with a focus
on energy efficiency and QoS compliance, guaranteeing that
functions meet their deadlines. Unlike previous approaches,
E2FIS prioritizes workload consolidation, scheduling func-
tions on energy-efficient nodes and deactivating idle ones,
achieving system-wide energy savings. Additionally, it explic-
itly considers node and function heterogeneity, making it well-
suited for the edge-cloud continuum. We formulate function
scheduling as a Mixed Integer Linear Programming (MILP)
problem to minimize energy consumption by consolidating

NODE 1
Status1: 
C1, M1, IPC1, P1

NODE 4
Status4: 
C4, M4, IPC4, P4

Scheduling 
computation
         +
Load Balancer

f1

f1
f2

f3
f4

f2 f1 f3
f3

Function invocations

NODE 2
Status2: 
C2, M2, IPC2, P2

NODE 3
Status3: 
C3, M3, IPC3, P3

Edge
 Zone

Gateway

Fig. 1: System architecture

FaaS workload, assigning functions to energy-efficient nodes.
Idle nodes are switched off to reduce energy waste.

We evaluated E2FIS through real experiments on the
Serverledge FaaS platform [3], comparing its performance
against the Earliest Deadline First (EDF) scheduling [4].
Results show that E2FIS reduces energy consumption up to
92%, ensuring that functions execute within their deadlines.

II. SYSTEM ARCHITECTURE AND PROBLEM
FORMULATION

The system architecture for E2FIS is shown in Fig. 1.
Function invocations are directed to the closest edge zone,
where a central gateway executes E2FIS. Time is divided
into discrete epochs, with the optimization problem at the
core of E2FIS solved before each epoch begins. The solution
determines function assignments to worker nodes and, hence,
the minimum number of nodes that must be active to handle
the FaaS workload. Any idle worker node is powered off to
minimize energy consumption.

Each edge node i is characterized by: (i) statusi, indicating
if the node is active or powered off, (ii) Ci, available com-
putational capacity, i.e., CPU, (iii) Mi, available memory, (iv)
IPCi, instructions per cycle, which is the average number
of instructions executed per clock cycle, and (v) Pi, power
consumption. The functions registered in the FaaS platform
are identified by the set F = {f1, f2, ..., fM}. Each function
fj is characterized by: (i) mj , the amount of memory required
for its execution, (ii) wj , the number of instructions it requires
to execute, i.e., workload, and (iii) dj , deadline, the maximum
time that elapse between function invocation and completion.



15 minutes 30 minutes
Epoch duration

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

En
er

gy
 c

on
su

m
pt

io
n 

(k
W

h)

-22% -25%

-2%

-5%

E²FIS, High workload
EDF High workload
E²FIS, Medium workload

EDF Medium workload
Energy consumption 
reduction with E²FIS

Fig. 2: Total energy consumption. Real experiments

Node 1 Node 2 Node 3 Node 4 Node 50
10
20
30
40
50
60
70
80
90

100

CP
U 

ut
iliz

at
io

n 
(%

)

Epoch duration: 15 minutes
E²FIS, High workload
EDF, High workload
E²FIS, Medium workload
EDF, Medium workload

Fig. 3: CPU utilization. Real experiments

To ensure functions meet their deadlines, E2FIS assumes
the worst-case load to compute the function allocation to
nodes. Specifically, for each epoch, an estimate of the maxi-
mum number of concurrent invocations of a function within a
given time slot, denoted as nj , is given as input. A forecasting
model could estimate nj , but load prediction is beyond the
scope of this paper. We assume nj is known in advance.

The core of E2FIS is an optimization problem, formulated
as a MILP, that determines the optimal functions placement
across worker nodes. It prioritizes execution on the most
energy-efficient nodes while ensuring functions meet their
deadlines, allowing idle nodes to be powered off. To define
this optimization problem, we consider an edge zone with
N heterogeneous edge nodes, each with different computing
capacity, memory, and power consumption. The problem is
formulated as follows:

min

N∑
i=0

yiEi (1.1)

subject to
M∑
j=0

nijmj ≤ Miyi, ∀i (1.2)

M∑
j=0

cij ≤ Ciyi, ∀i (1.3)

nijwj

cijIPCi
≤ dj , ∀i,∀j (1.4)

N∑
i=0

nij = nj , ∀j (1.5)

The model produces three outputs: (i) the status of each

node for the next epoch, represented by binary variable yi; (ii)
the maximum number of concurrent invocations of function fj
assigned to node i (nij); and (iii) the total CPU allocated to fj
on node i (cij). The objective function in Eq. 1.1 minimizes
the total system energy consumption by determining the set
of active nodes needed to execute all functions within their
deadlines, where Ei is the energy required to keep node i
active during the epoch. Constraint 1.2 ensures that memory
required for fj on node i does not exceed its capacity.
Constraint 1.3 limits total CPU assigned to fj on node i
within its available capacity. Constraint 1.4 guarantees that
function deadlines are respected. Constraint 1.5 ensures the
total number of invocations of fj matches the maximum nj .
Each node is characterized by its CPU capacity Ci (GHz),
memory Mi (GB), and power consumption Pi (W). Energy
consumption Ei is modeled as constant over time based on
Pi, though other models can be integrated.

III. EXPERIMENTAL ANALYSIS

To evaluate the effectiveness and practicality of E2FIS, we
carried out real-world experiments on the Serverledge FaaS
platform, integrating E2FIS. We considered an edge zone
with 7 nodes equipped with amd64-architecture CPUs, epochs
of 15 and 30 minutes and two workload types, nj : high and
medium workload. Fig. 2 shows the energy consumption of
E2FIS and EDF. E2FIS achieves a significant reduction in
energy consumption compared to EDF. This effect is particu-
larly evident for 15 minute epochs, where energy consumption
is reduced in a range from 22% to 25%.

From Fig. 3, we can see that E2FIS predominantly relies
on Node 1. This behavior aligns with the core principle of
E2FIS, that makes it the preferred choice for energy-efficient
scheduling. Conversely, EDF prioritizes nodes with higher
CPU frequencies, particularly Nodes 2, 4, and 5, which offer
greater computational capacity but are less energy-efficient.

IV. CONCLUSIONS

E2FIS (Energy-Efficient Function Invocation Scheduling)
is a novel framework for optimizing centralized function
scheduling in edge FaaS platforms, aimed at reducing energy
consumption while meeting function deadlines, prioritizing
execution on energy-efficient nodes and powering off idle
ones. For future work, we will explore how to manage edge
nodes with distributed scheduling to enhance scalability and
reduce computation time in large-scale edge deployments.

REFERENCES

[1] M. S. Aslanpour, A. N. Toosi, M. A. Cheema, and R. Gaire, “Energy-
aware resource scheduling for serverless edge computing,” in 22nd IEEE
International Symposium on Cluster, Cloud and Internet Computing
(CCGrid), 2022, pp. 190–199.

[2] M. Shahrad, J. Balkind, and D. Wentzlaff, “Architectural implications
of function-as-a-service computing,” in 52nd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, 2019, p. 1063–1075.

[3] G. Russo Russo, T. Mannucci, V. Cardellini, and F. Lo Presti,
“Serverledge: Decentralized function-as-a-service for the edge-cloud con-
tinuum,” in 2023 IEEE International Conference on Pervasive Computing
and Communications (PerCom), 2023, pp. 131–140.

[4] F. Zhang and A. Burns, “Schedulability analysis for real-time systems
with EDF scheduling,” IEEE Transactions on Computers, vol. 58, no. 9,
pp. 1250–1258, 2009.


