
Edge Proxy Orchestration for
HTTP-Based Service Continuity

Lorenzo Giorgi∗, Carlo Puliafito†, Antonio Virdis† Enzo Mingozzi†
∗T.A.I. Software Solution Srl, Pisa, Italy

†Department of Information Engineering, University of Pisa, Pisa, Italy

I. INTRODUCTION

Cloud computing provides computation via remote data
centers. Edge computing extends it by deploying micro data
centers (MDCs) across the cloud-edge continuum, closer
to clients. This enables low-latency applications aimed at
powering smart cities, such as augmented/virtual reality or
autonomous driving. Edge computing is being standardized
by ETSI as Multi-access Edge Computing (MEC).

In cloud-edge scenarios, clients often need to access services
at different locations, for example due to mobility or for load
redistribution. Ensuring seamless service continuity — trans-
parent and robust access to services despite such changes —
is essential. However, existing solutions often rely on ad hoc
protocols or dedicated infrastructure, leading to complexity,
limited transparency, or degraded performance.

While many service-continuity approaches assume direct
client-service interactions, commercial cloud platforms (e.g.,
AWS, Azure) typically rely on a single proxy acting as the
entry point to the cloud data center. This proxy acts as
a transparent intermediary between the client and the pool
of cloud services, managing load balancing, routing, access
control, and telemetry collection. This trend is extending to
cloud-edge systems. A single proxy entry point, however, is
impractical due to the geographic distribution of edge servers.
Recent proposals instead advocate distributed edge proxies.
Each edge proxy may be decoupled from a specific MDC and
rather execute as a forward proxy in close proximity to clients.
In such a way, each proxy may potentially dispatch requests
to any server in the cloud-edge continuum rather than to a
subset of servers represented by a single MDC. This allows the
system to be more flexible and muster the resources distributed
in the continuum, to accommodate application requirements.

Following this trend, this work — which is the short version
of [1] — leverages edge proxies as the core element of
a service-continuity platform for the cloud-edge continuum.
Fig. 1 depicts a mobility use case describing a real application
benefiting from our solution. A drone traverses a city to deliver
a parcel. Along its path, it may access the cloud-edge system
to benefit from different types of service. Let us focus on a
specific service, namely image filtering. The drone captures
video frames of the surrounding environment and needs an
image-filtering service, which we call λ, to analyze them.
Access to the cloud-edge system is through distributed edge
proxies, πi, so that at each time the drone is connected only to

one proxy in its proximity. At the beginning (see Fig. 1(a)), the
drone connects to proxy π1, which forwards service requests
to λ hosted on edge server 2. Later, the drone moves far from
its current entry point. As shown in Fig. 1(b), requests need
to traverse a longer network path to reach proxy π1. This
may impair application performance. As a result, platform
reconfiguration is needed to let the drone connect to π2, which
is closer to its new location (see Fig. 1(c)). Our example
shows that requests eventually reach the same λ instance on
edge server 2; however, the system orchestrator may decide to
reallocate cloud-edge resources to meet system or application
requirements.

Our solution is based on dynamic coordination of edge
proxies. When a client needs to change from a source to
a target proxy, an orchestrator updates proxy configurations.
Specifically, it copies a per-client state on the target proxy,
which lets the proxy recognize the client and know how to
forward it requests. Besides, the orchestrator instructs the
source proxy so that it can advertise the target proxy as
the new one for the client. This advertisement is performed
by leveraging the Alternative Services (AltSvc) extension of
HTTP, which makes a client aware of service availability on
a different network endpoint. The proposed approach does
not require any ad-hoc network infrastructure nor protocol.
Furthermore, it is transparent to applications and relies solely
on standard HTTP extensions and orchestrated proxy behavior.

II. OVERVIEW OF THE SERVICE-CONTINUITY SOLUTION

Our platform is designed around a distributed architecture
that enables seamless service continuity for clients accessing
cloud-edge services. Core to this solution is the use of edge
proxies, which serve as entry points to the continuum for the
clients. These proxies are managed by a central orchestrator
that monitors client location and system load to dynamically
assign each client to the most appropriate proxy.

When a client first logs into the system, the orchestra-
tor authenticates it and assigns it to a nearby edge proxy.
Two HTTP headers are included in the login response: an
Alt-Svc header, pointing to the assigned proxy, and a
Set-Cookie header, which contains an authentication token.
This token allows to associate the client with a proxy-hosted,
per-client state, which includes request-forwarding rules based
on application requirements such as latency or throughput. As
long as these requirements do not change, the client continues
interacting with the system using the same proxy and cookie.



Edge server 2

Edge server 1 Edge server 3

(a)

Edge server 2

Edge server 1 Edge server 3

Mobility

(b)

Edge server 2

Edge server 1 Edge server 3

(c)

Fig. 1: The service-continuity use case of a drone for last-mile delivery.

Over time, the orchestrator may determine that a client
should switch from a source to a target proxy, for example
due to client mobility or for load redistribution. To manage
this transition, the orchestrator updates the target proxy with
the per-client state and configures the source proxy to include
a new Alt-Svc header in its next response. This informs the
client of the target proxy. As a result, the next client’s requests
reach the target proxy, though maintaining the same Host
header field and cookie as before. As a result, this solution is
totally transparent with respect to the application logic. As per
the AltSvc mechanism, the client needs to open a new TCP
connection and TLS session when it first contacts the target
proxy. Once the transition is complete and the target proxy
receives the first client request, the orchestrator finalizes the
handover by cleaning up the per-client state on the source
proxy and optionally deallocating service instances.

The implementation of our proposed platform, which lever-
ages Envoy as proxying technology, is publicly available on
GitHub at https://github.com/Unipisa/CEPHAS-platform.

III. EVALUATION OF TRANSACTION TIME

We show a simple experiment to validate our solution. We
ran the test over the OpenStack cloud infrastructure of the
University of Pisa. The testbed comprised five virtual machines
(VMs), each having 2 virtual cores, 2GB of RAM memory,
and running Ubuntu 20.04 with Linux kernel 5.4: (i) two VMs
run platform components; (ii) one VM runs the client; and
(iii) two VMs are edge servers, each leveraging Docker to run
Envoy proxy and service instance.

The goal of the test is assessing the impact of our solution
on an application. We therefore performed long-run tests (80
minutes, 9600 transactions each) and measured the transaction
time experienced by the application, which is the interval from
the issuing of an HTTP request by the client to the reception of
the related response. The considered application consists of a
client performing a GET request every 0.5 s. The request firstly
reaches the edge proxy of the client and is then forwarded to
the backend service co-located with the proxy. The service
container responds with “hello from <host name>”.

In the experiment, the client moved back and forth between
the two edge servers, getting closer to one and farther from
the other, and changed edge proxy accordingly. We used Linux
Traffic Control to emulate network delays and thus client
mobility. Specifically, we set the round-trip delays to the edge
servers to be 7±1ms and 26±1ms, for the closer and farther

edge servers, respectively. The client moves every 20 minutes,
thus causing three proxy changes per repetition.

We compared our solution against two alternatives: (i) No
Proxy Change (NPC), where the client does not change proxy;
(ii) DNS, the most used by ETSI MEC, where the client needs
to resolve the DNS. We considered two variants — DNS1
and DNS60 — depending on the number of seconds, Time To
Live (TTL), that the client maintains the DNS record in cache
before asking again. For the AltSvc and DNS solutions, we
considered two further variants, Container and NoContainer,
whether or not the platform spawns a new service container
besides changing proxy.

Fig. 2 presents the results of mean transaction time. In NPC,
the client reaches the farther proxy for half of the experiment
duration. DNS solutions pay the cost of establishing a new
connection/session for each transaction. DNS60 has slightly
higher mean transaction time since it takes longer to change
proxy due to higher TTL. Our solution performs the best as it
opens a new connection/session only when it changes proxy
and allows the client to rapidly switch proxy. Figure 2 shows
no significant advantage of the NoContainer variant. This is
because only few transactions may benefit from the NoCon-
tainer variant, hence having no impact on the mean transaction
time, which is calculated over thousands of transactions.

ACKNOWLEDGMENT

This work was supported by the European Union —
NextGenerationEU — under the National Sustainable Mobility
Center (Italian Ministry of University and Research Decree n.
1033—17/06/2022, Spoke 10); Partnership on “Telecommu-
nications of the Future” through the Program “RESTART”;
PRIN 2022 Project TWINKLE.

REFERENCES

[1] L. Giorgi, C. Puliafito, A. Virdis, and E. Mingozzi, “Service continuity
in edge computing through edge proxies and http alternative services,”
IEEE OJCOMS, vol. 5, pp. 7057–7074, 2024.

25.08

15.80

38.72 40.59

15.74

38.86 40.46

0

10

20

30

40

50

60

NPC AltSvc DNS1 DNS60

M
ea

n 
tr

an
sa

ct
io

n 
ti

m
e 

[m
s]

Container NoContainer

Fig. 2: Mean transaction time for the different solutions.


