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I. INTRODUCTION

Cloud computing delivers computational resources via re-
mote data centers. Edge computing enhances this model by
deploying servers across the cloud-edge continuum, placing
them nearer to end users. This supports low-latency applica-
tions critical to smart cities, such as augmented/virtual reality
and autonomous vehicles. The European Telecommunications
Standards Institute (ETSI) is standardizing this paradigm under
the name Multi-access Edge Computing (MEC).

In cloud-edge deployments, clients frequently access ser-
vices from various locations, driven by factors such as mobility
or load balancing. Maintaining seamless service continuity —
ensuring uninterrupted, transparent, and secure access to ser-
vices despite location changes — is vital. In another extended
abstract submitted to I-CiTies 2025, we present a service-
continuity solution leveraging a pool of distributed edge prox-
ies. These proxies function as intermediaries between clients
and edge services, regulating request routing, load balancing,
and access control. Fig. 1 illustrates a mobility scenario
showcasing a practical use case of that solution. Consider a
drone delivering a package through an urban environment. As
it moves, it may need to access various services within the
cloud-edge infrastructure. We focus on a specific example:
an image-filtering service, denoted as A. The drone captures
live video of its surroundings and relies on A to process the
frames. Access to this service is mediated by distributed edge
proxies, m;, with the drone always connected to the nearest
one. Initially (Fig.1(a)), it connects to proxy 7j, which routes
requests to A hosted on edge server 2. As the drone travels
(Fig.1(b)), the connection to 7; becomes inefficient due to
increasing network latency. Consequently, the platform must
reconfigure to allow the drone to connect to a closer proxy,
o (Fig.1(c)). In this example, requests continue to reach the
same A\ instance on edge server 2; however, the orchestrator
may alternatively choose to relocate services based on system
conditions or application demands.

The foundation of that solution lies in dynamic coordination
of proxies. When a client switches from one proxy to another,
a system orchestrator updates configuration accordingly: it
transfers the per-client state to the new target proxy, allowing
it to recognize the client and route its requests appropriately.
Concurrently, the orchestrator directs the source proxy to
inform the client of the new proxy address. This redirection
leverages the HTTP Alternative Services (AltSvc) extension,
which enables clients to discover alternative network endpoints

offering the same service. Subsequently, and without requiring
changes to the application logic, the client initiates a new
Transport Layer Security (TLS) session with the new proxy
and begins sending its requests there. However, establishing a
new TLS session introduces both latency and data overhead
— challenges becoming pronounced in latency-critical appli-
cations or scenarios involving frequent proxy handovers. Con-
sequently, there is a need to optimize TLS session establish-
ment. Furthermore, such optimizations must not compromise
security, which must be robust even against emerging threats
posed by advancements in quantum computing.

In this work — which is a short version of [1] — we
enrich the presented service-continuity platform by integrating
advanced TLS 1.3 features toward fast session resumption
and post-quantum key exchange. This improved version of
the platform, which is based on Envoy proxies and Bor-
ingSSL library, is publicly available at https://gitlab.com/
tesi-lm/tls13resumption-pgkex-platform. The goal of this work
is testing the viability of strong security while not sacrificing
performance for service continuity in cloud-edge systems.

II. RESUMPTION AND POST-QUANTUM KEY EXCHANGE
A. Post-quantum TLS 1.3

Migrating the Internet to post-quantum key agreement is
essential to protect encrypted communications from future
quantum threats. A critical concern is the Store Now Decrypt
Later (SNDL) strategy, where adversaries capture encrypted
data today to decrypt them once quantum capabilities mature.
To address this, post-quantum Key Encapsulation Mechanisms
(KEMs) are being integrated into protocols like TLS.

Among these, ML-KEM-768 — based on the Learning With
Errors (LWE) problem over modular lattices — is currently
the only post-quantum KEM standardized by NIST, offering
an estimated 192-bit security level. This surpasses the 128-bit
security of classical schemes like X25519, which is known to
be vulnerable to quantum attacks.

Despite the stronger theoretical guarantees
KEM-768, hybrid key exchange schemes such as
X25519MLKEM768 have been defined by the IETF
for TLS 1.3. These combine classical and post-quantum
algorithms to hedge against potential future weaknesses in
lattice-based cryptography or implementation flaws.

of ML-

B. Session Resumption in TLS 1.3

Session resumption is particularly beneficial for latency-
sensitive applications deployed in dynamic cloud-edge envi-
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Fig. 1: The service-continuity use case of a drone for last-mile delivery.

ronments, where minimizing handshake overhead is critical.
In TLS 1.3, session resumption is enabled through a session
ticket sent by the server at the end of the initial handshake.
This ticket encapsulates the information required to resume
a session, most notably the pre-shared key (PSK), and is
stored by the client. Upon reconnection, the client includes the
ticket in its ClientHello, allowing the server to resume the
session without a full handshake.

Servers may handle session tickets in either a stateful or
stateless manner. Stateful resumption requires maintaining per-
session data on the server side, which introduces complexity
and scalability issues in distributed systems. Stateless resump-
tion, in contrast, embeds all necessary session state within
the ticket itself, which is encrypted and authenticated using a
Session Ticket Encryption Key (STEK). In this work, we adopt
the stateless approach by synchronizing a single STEK across
all Envoy proxies, enabling cross-node ticket decryption and
seamless session resumption across edge proxies. To maintain
strong security guarantees, the STEK is periodically rotated,
reducing the impact of potential key compromise.

III. PERFORMANCE EVALUATION

Our goal is evaluating the impact of the different TLS
1.3 configurations on session establishment and ultimately
on service continuity. We deployed a client and an Envoy
proxy as two Docker containers, both running within a virtual
machine having 2 vCPUs, 2 GB of RAM, and running Ubuntu
20.04. We conducted the experiments across four TLS 1.3
configurations, which we derived by combining two key
exchange mechanisms — X25519 and X25519MLKEM768 —
with the two handshake approaches, namely full and resumed.
We considered the following two metrics:

e Cryptographic overhead — Time spent on key crypto-

graphic operations involved in the TLS handshake.

e Data overhead — Size of the Client Hello and

Server Hello TLS handshake messages.
We ran 35 repetitions for each experiment and show results
with 95% confidence intervals, if present.

Fig. 2 depicts cryptographic overhead by client and server.
Certificate validation dominates client-side cost, while key
exchange operations — key generation, encapsulation, and
decapsulation — have similar latency across full and re-
sumed handshakes. X25519MLKEM768 incurs about twice
the overhead of X25519, whereas certificate operations remain
unaffected by the key exchange method.
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Fig. 2: Cryptographic overhead on client and server.
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Fig. 3: Data overhead in terms of Client Hello and
Server Hello messages, expressed as bytes exchanged by
the different TLS 1.3 configurations.

Fig. 3 shows that full Client Hello is about 240 B for
X25519 and over 1.4kB for X25519MLKEM768, mainly due
to public key size. Full Server Hello messages include
a 2kB certificate. In resumed handshakes, a 250 B session
ticket is added to Client Hello, but the certificate is
omitted from Server Hello, reducing total sizes to 700 B
for X25519 and 3kB for X25519MLKEM768 — 27% and
62% of the full handshake, respectively.
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