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Abstract—Accurate and portable color detection technolo-
gies are increasingly relevant in smart city contexts, where
infrastructure maintenance, asset monitoring, and compliance
assessment require reliable, in-situ data collection. This paper
presents a wearable system for color classification based on
the SENSIPATCH platform, which integrates a multi-wavelength
spectrometer and machine learning-based processing. To simulate
a diffusive and homogeneous optical background that mimics
real-world conditions, such as urban materials placed on reflec-
tive or scattering surfaces, we placed multiple sheets of white
paper behind the PANTONE samples during acquisition. This
setup does not interfere directly with the light path between the
sensor and the sample, but it affects the overall backscattering
environment. The spectral responses obtained from six discrete
LEDs were used as input features for four supervised machine
learning models. Among them, the Support Vector Machine
(SVM) achieved the highest classification accuracy of 93.13%.
The results demonstrate the system’s feasibility as a low-cost,
portable solution for automated visual inspection tasks within
smart city applications.

Index Terms—Color classification, Spectrometer, Wearable
sensing, Machine learning, SENSIPATCH

I. INTRODUCTION

Color monitoring in urban infrastructure, such as road signs,
street furniture, and painted surfaces is essential for mainte-
nance, safety, and compliance in smart cities. Conventional vi-
sual inspections are subjective and inefficient, while high-end
spectrometers, though accurate, are often bulky and costly. Re-
cent advances in low-cost optical sensors and machine learning
enable portable, data-driven color classification systems. These
have shown promise in agriculture [1f], biomedical analysis
[2]], fashion [3]], and forensics [4]. More complex methods like
hyperspectral imaging [5]], embedded multispectral sensors [6],
and IoT-based tools such as Skinly [7]] offer higher precision
but often at the expense of cost or wearability [8]. This
study investigates the use of the SENSIPATCH platform [9],
a compact, wearable spectroscopic system developed by Sen-
sichips [[10]. It integrates the SENSIPLUS microsensor [11]
and six LEDs covering visible to near-infrared wavelengths.
PANTONE [12] color cards were evaluated under diffusive

conditions by overlaying 15 layers of white paper to simulate
real-world interference such as skin or fabric.
This work aims to:

o Evaluate the SENSIPATCH’s accuracy under scattering
conditions.

o Train machine learning models using raw spectral signals
from the device.

II. METHODOLOGY
A. Experimental Setup

The experimental setup involved covering official PAN-
TONE color samples with fifteen layers of standard white
A4 paper to mimic real-world diffusive interference. The
SENSIPATCH device was placed beneath the stack, ensuring
contact with the bottom of the color sample. This design
simulated conditions where color detection occurs through
scattering surfaces like skin or fabric.

B. Data Acquisition

The SENSIPATCH device includes six LEDs at specific
wavelengths: Blue (468 nm), Green (523 nm), Yellow (593
nm), Red (645 nm), and Infrared (850 nm and 950 nm). Each
LED was activated in sequence while the central photodiode
measured reflected light. A lock-in amplifier extracted the in-
phase current response from the sensor under each wavelength.

For each color sample:

« Five independent measurements were collected.
o Each measurement consisted of 1,151 samples.
e The first 150 samples captured ambient conditions (no
card).
¢ From sample 151 onward, a color card with 15 paper
layers was added.
e A baseline correction was applied by subtracting the
mean signal of the ambient samples from the rest.
Ten conditions were measured: nine PANTONE colors and
plain white paper, plus an empty baseline (AIR). Each data
point consisted of six features one for each LED wavelength.



III. MACHINE LEARNING MODELS

Four supervised models were trained on the baseline-
corrected spectral data: Support Vector Machine (SVM), Ran-
dom Forest (RF), K-Nearest Neighbors (KNN), and Multi-
Layer Perceptron (MLP). Five-fold cross-validation ensured
robustness. The six spectral responses served as direct inputs.

Model hyperparameters included:

e SVM: linear kernel, probability estimation enabled

o RF: 200 estimators

o KNN: £ =150

e MLP: two hidden layers with 100 and 50 neurons

IV. RESULTS

The performance of four supervised machine learning mod-
els SVM, MLP, KNN, and RF was evaluated using five-
fold cross-validation. Table [[] presents the average accuracy,
precision, recall, and Fl-score across folds. SVM achieved
the highest mean accuracy of 93.13%, outperforming the
other classifiers across all evaluation metrics. Its performance
was consistent across folds, with a low standard deviation of
3.97%, indicating robustness against sampling variation. MLP
followed closely with 92.01% accuracy but exhibited higher
variability across folds, suggesting it may be more sensitive
to training conditions.

KNN performed reasonably well (88.99%) but was more
prone to misclassification, particularly in spectrally similar
classes. Random Forest yielded the lowest accuracy (79.16%),
potentially due to overfitting or limited generalization capacity
when using raw spectral input without feature engineering.

TABLE I
MODEL PERFORMANCE METRICS (MEAN OF 5 FOLDS)

Model Accuracy Precision Recall F1

SVM 93.13% 92.79 93.13  91.13
MLP 92.01% 91.19 92.01  90.32
KNN 88.99% 85.21 89.01 85.83
RF 79.16% 73.16 73.00  72.87

To further assess model behavior at the class level, the
mean confusion matrix for the SVM model is presented in
Figure [I] The matrix highlights that several classes, such as
PURPLE_5125,RED_1797, and YELLOW_7548, were clas-
sified with 100% accuracy. Minor misclassifications were ob-
served primarily among spectrally similar classes, for example,
BLACK_19-4305 was confused with Blue_18 4525 and
GREEN_7726, and LIGHTESTSKY_4804 was misclassified
as BROWN_16-1439.

V. CONCLUSION

This study demonstrates the viability of wearable color
classification under scattering conditions using the SENSI-
PATCH spectrometer. The system achieves high accuracy
without extensive preprocessing, confirming its potential for
smart city maintenance tasks. Future efforts will expand the
dataset, refine the hardware setup, and explore hybrid models
for enhanced generalization.
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Fig. 1. Mean Confusion Matrix for SVM
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