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Abstract—Latency-sensitive applications, such as autonomous
driving in smart cities and industries, require robust networking
and computing support. The cloud-to-edge continuum offers
a promising solution by bringing computation closer to edge
devices. However, heterogeneity and geographic distribution of
nodes make deployment challenging. We address this in a tele-
operated autonomous driving scenario by modeling the orchestra-
tion as a Virtual Network Function Placement Problem (VNFPP)
with multi-tier performance levels, enabling vertical scaling per
microservice. Our solution, MORAL, minimizes deployment costs
based on node centrality while meeting resource and latency
constraints. Simulations on realistic network topologies and syn-
thetic applications show that our approach improves deployment
feasibility and latency compliance over single-tier and baseline
methods.

Index Terms—Service Orchestration, Cloud-to-Edge Contin-
uum, Mathematical Optimization

I. INTRODUCTION

Autonomous vehicle technology is rapidly advancing, with
applications spanning production, logistics, smart cities, and
smart factories. By reducing human involvement in repetitive
tasks, it enables safer, cleaner, and more efficient last-mile
logistics. These vehicles rely on numerous onboard sensors
that generate large volumes of data requiring low-latency
processing. Additionally, complex operating environments ne-
cessitate the integration of external data sources.

However, limited processing power on IoT devices and
autonomous vehicles hampers full on-device computation,
especially under strict latency constraints. To address this, a ro-
bust networking and computing infrastructure is essential [1].
The emergence of 5G and cloud-to-edge continuum computing
supports such needs, but the distributed and heterogeneous
nature of this infrastructure poses new challenges. These
include balancing resource utilization, meeting application
requirements, and enforcing security and isolation to preserve
data privacy across microservices.

This paper addresses the deployment of latency-sensitive
microservice applications over a cloud-edge continuum by
optimizing resource usage. We frame the problem as a Virtual
Network Function Placement Problem (VNFPP), extended
with vertical scaling to dynamically adjust resource tiers for
each microservice to meet latency constraints. Variants of
the problem reflect differing application and network require-
ments, with objectives typically focused on latency, delay, and
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Fig. 1: System model

resource efficiency [2]–[6]. However, no formulation for the
VNFPP in edge environments explicitly integrates multi-level
performance scaling under end-to-end constraints.

We introduce Multi-level Optimization for Resource-Aware
Latency constraints (MORAL), a novel mathematical pro-
gramming formulation that models resource requirements and
service dependencies. Our contributions are: (i) native support
for vertical scaling, enabling flexible resource allocation per
microservice, and (ii) an objective function that minimizes
reliance on topologically strategic nodes using a centrality-
based deployment cost. We validate our approach through
experiments on realistic urban scenarios, demonstrating im-
provements over models lacking vertical scaling.

II. SYSTEM MODEL

The overall architecture is illustrated in Fig. 1. At the
top left, a microservices-based application is shown. The
orchestrator receives deployment requests and generates an
Application Deployment Plan, factoring in network connec-
tivity and resource availability.

A. Application

We model applications as directed acyclic graphs (DAGs),
M = (T,D), where nodes u ∈ T represent microservices, and
edges (u, v) ∈ D denote interdependencies and data flows.
Each node includes minimum hardware requirements and a
processing time, defined as the maximum execution time when
running with its minimum resource allocation. Processing time
decreases with increased resources due to vertical scaling.
Edges are annotated with the required datarate between mi-
croservices. Applications may have multiple computational
flows, each with specific end-to-end latency requirements.

B. Cloud-Edge Physical Network

The physical infrastructure is modeled as a directed graph
G = (I, A), where I is the set of computing nodes and A
the set of physical links. Nodes are annotated with available
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Fig. 2: Percentage of MORAL outcomes over instances, grouped by latency limit and performance level
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Fig. 3: Algorithm latency comparison

resources, and links with maximum datarate and minimum
delay. As illustrated in Fig. 1, the infrastructure adopts a multi-
tier topology: edge nodes have limited resources, while cloud
nodes offer virtually unlimited capacity.

Node centrality plays a key role in meeting latency con-
straints. However, relying solely on central nodes can lead
to resource contention. To balance deployment decisions, we
assign a cost to each node proportional to its centrality. We
adopt the betweenness centrality metric, which captures both
local and global communication roles.

C. Orchestration Decision Process

The orchestrator, named MORAL (Multi-level Optimization
for Resource-Aware Latency Constraints), processes: (i) the
application DAG and requirements, and (ii) the current state
of the physical infrastructure. It outputs an assignment plan
for the deployment manager. The orchestrator maps microser-
vices to physical nodes, ensuring compliance with resource
and dependency constraints, and selects resource levels for
each microservice to satisfy latency requirements across all
computational flows.

We formalize the orchestration task as a VNFPP problem
using Mixed Integer Linear Programming (MILP) formula-
tion, and we solve it using a general-purpose solver to get
preliminary results about the feasibility and effectiveness of
the approach.

III. RESULTS

A. Comparative Algorithms

We evaluate our model’s effectiveness by comparing it
with two baseline strategies that consider only node resource
constraints, ignoring end-to-end latency requirements. The first
baseline, Greedy, prioritizes vertical stacking by assigning
microservices to the lowest-cost nodes at the highest feasible
performance level. The second, Random, iteratively assigns
microservices to nodes and performance levels randomly,
ensuring only that resource constraints are satisfied.

B. Feasibility

The feasibility analysis, reported in Fig. 2, shows higher
success rates for the multi-level performance configuration and
the results are consistent across all the latency classes. On
the contrary, fixed-level performance configurations struggle
to find feasible solutions. Focusing on the lowest latency class
(22.5 ms), we observe that the low-level configuration does not
meet the latency requirements due to a long processing time. In
contrast, the high-level configuration quickly saturates strate-
gic node capacity, forcing the deployment of microservices
on other nodes, and failing to meet latency requirements. By
increasing the end-to-end latency threshold, the solver can find
more feasible solutions. However, we can note that high-level
performance configuration cannot provide feasible solutions
for a non-negligible number of instances.

The results shown in Fig. 2 highlight the benefits of flexible
performance level instantiation, allowing the solver to deploy
the most suitable instance for each application microservice.

C. End-to-end Constraint respect

We analyze the maximum latency observed across microser-
vice chains in each deployment. Since latency is not directly
minimized – only constrained – solutions aim to respect the
bound without optimizing its value. Our multi-performance
level formulation not only balances resource allocation to en-
sure feasible deployments under strict end-to-end constraints,
but also maintains latency within acceptable bounds, up to
three times lower compared to baseline methods that consider
only node-level constraints, as shown in Fig. 3.
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