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Abstract—Aphid infestations in agriculture cause significant
economic losses, with enormous damages annually. This paper
presents a lightweight deep learning system specifically designed
for the accurate identification of four high-impact aphid species
— Myzus persicae, Aphis gossypii, Macrosiphum euphorbiae, and
Aphis spiraecola — distinguishing them from other insect species.
Unlike traditional models that only detect aphids in general,
our ensemble model combining DenseNet121 and InceptionV3
achieves 94.89% classification accuracy in identifying individual
aphid species, while remaining computationally efficient for edge
deploymentenabling real-time field monitoring without cloud
dependency. Additionally, we propose integrating this model
with Agrigeos’ Plantarray IoT system, enabling real-time aphid
species monitoring through the synergistic analysis of plant
physiological data and computer vision. This approach holds
great promise for early, precise pest detection in agriculture,
reducing pesticide use and crop losses.
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I. INTRODUCTION

Aphids (superfamily Aphidoidea, order Hemiptera) (Guer-
rieri and Digilio, 2008) are insects mostly found in temperate
regions that colonize about 25% of existing plant species
(Dixon et al., 1987), causing a serious problem for agriculture
despite being a small insect group of about 4000 species
(Dedryver et al., 2010). Their feeding activity weakens host
plants in different ways: first, as phloem-feeders, removing
the sap necessary for plant growth and reproduction; second,
injecting phytotoxic saliva; third, they can transmit several
viruses of plant disease (nearly 50% of insect-borne viruses
are transmitted by aphids (Nault, 1997; Katis et al., 1997).
Even the sooty molds (saprophytic ascomycetes) that grow
on aphid honeydew represent an indirect damage, hindering
photosynthetic activity.

It is very difficult to give a precise assessment of the
potential economic losses due to aphids because of the great
between-year variation in their population size and crop
damage, as well as the diversity of crops and agricultural
conditions (Dedryver et al., 2010). However, conservative
estimates suggest annual losses of 700,000 tonnes of wheat,
850,000 tonnes of potatoes, and 2,000,000 tonnes of sugar
beet in Europe alone (Wellings et al., 1989). The ability to
rapidly exploit ephemeral habitats, high reproductive potential
(due to parthenogenesis), dispersal capacity, and adaptability

often make aphids key pests in most arable, horticultural, and
fruit crops (Dedryver et al., 2010).

Therefore, their correct management is very important,
especially in precision agriculture contexts. The first step to
control them is precise identification, which can be difficult
for several reasons: their small body size, polyphagous habits,
polymorphism, and intraspecies color variations. In particular,
morphological complexity is a major barrier, as distinguishing
between species often requires microscopic examination of
minute differences (e.g., cornicle length varying by < 0.5
mm). This process is highly dependent on expert entomol-
ogists and is further complicated by field conditions, where
inconsistent lighting and complex backgrounds make visual
identification unreliable.

Despite these challenges, recent deployments of agroe-
cosystem management in Sicilian greenhouses and orchards
demonstrate promising economic benefits. By enabling early
detection and more precise pest management, such systems
highlight the potential of automated, species-level identifica-
tion tools.

II. DATASET COMPOSITION

The dataset used in this study was developed through
a structured and collaborative process. Initially, a total of
628 high-resolution images of aphids were collected across
different online databases. To enhance the dataset’s accuracy
and reliability, it was submitted to AgriGeos, a contract
research organization of the agrochemical sector. Their ex-
perts reviewed and cleaned the data using domain-specific
knowledge, revalidating species annotations and addressing
imbalances, as certain species were overrepresented while
others had relatively few instances.

To mitigate class imbalance and improve the robustness
of model training, image augmentation techniques such as
rotation, flipping, and brightness adjustment were applied.
The final curated dataset consists of 728 high-resolution RGB
images representing four key aphid species: Myzus persicae
(246 images), Aphis gossypii (248 images), Macrosiphum
euphorbiae (224 images), and Aphis spiraecola (265 images).
This refined and balanced dataset provides the foundation
for the deep learning-based aphid detection and classification
system proposed in this study.



III. PROPOSED METHODOLOGY

The proposed classification framework comprises three key
components: a custom Convolutional Neural Network (CNN),
transfer learning using pretrained models (DenseNet121 and
InceptionV3), and a weighted ensemble method to enhance
overall robustness.

A. Custom CNN Development

A custom CNN was designed to extract relevant features for
four-class classification. The initial architecture consisted of
multiple convolutional layers with ReLU activation, followed
by MaxPooling, a flattening layer, and a Dense layer with 512
units. To improve performance, the architecture was extended
with deeper convolutional blocks using filter sizes of 32 to
512, and regularized with a Dropout layer (rate = 0.5). The
model was trained for 100 epochs using the Adam optimizer
with a learning rate of 0.001.

B. Transfer Learning with Fine-Tuning

To leverage pretrained representations, DenseNet121 and
InceptionV3 models were fine-tuned. For DenseNet121, the
top 20 layers were unfrozen and a custom classifier was
appended, including Global Average Pooling, a Dense layer
(256 units, ReLU, L2 regularization with λ = 0.01), Dropout
(0.5), and a softmax output layer. InceptionV3 underwent
a similar setup, with selective fine-tuning, and a classifier
composed of Global Average Pooling, a Dense layer (256
units, ReLU), Dropout (0.6), and softmax output. Both models
used data augmentation and early stopping, with InceptionV3
additionally employing exponential learning rate decay starting
from 0.0001.

C. Ensemble Learning Strategy

To improve classification accuracy, a soft-voting ensemble
was implemented. Two fusion strategies were explored: simple
averaging and a weighted ensemble. The final method used a
weighted combination of model outputs:

Pensemble = 0.6× PDenseNet + 0.4× PInception.

Weights were chosen empirically, reflecting each model’s
performance on specific classes. DenseNet121 showed higher
precision for certain species such as Aphis gossypii, while
InceptionV3 performed better on others like Myzus persicae.
By assigning a higher weight to DenseNet121, the ensem-
ble leverages its stronger contributions without discarding
complementary insights from InceptionV3. This weighted
combination improves class-specific performance and overall
generalization.

IV. RESULTS

A. Performance Metrics

The system achieves superior performance compared to
traditional methods:

:

Model Accuracy

Custom CNN 78.83%
DenseNet121 93.43%
InceptionV3 94.16%

Ensemble 94.89%

Fig. 1. Model Accuracies

V. FUTURE WORK: IOT INTEGRATION

In this paper, we presented an integrated system for early
detection and monitoring of pest-induced plant stress. By
leveraging multispectral imaging, machine learning models,
and field-based validation, the proposed framework enables
proactive identification of crop stress symptoms and sup-
ports precision agriculture practices. The system demonstrated
promising results in enhancing situational awareness and
decision-making for agronomists.

A. Synergy with Plantarray Systems

In collaboration with Agrigeos, future work will involve the
integration of physiological sensing data using the Plantarray
platform to enhance the contextual understanding of pest-
induced plant stress. The system is designed to monitor
critical stress indicators such as canopy stomatal conductance
(mmol/m2/s), volumetric water content at the onset of stress
(θcrit), and photosynthetically active radiation (µmol/m2/s).
To support real-time inference in field conditions, edge com-
puting deployment will be realized using NVIDIA Jetson-
based units, enabling efficient on-site processing. These units
will be connected via 5G-enabled transmission modules to
allow for immediate alerts and continuous synchronization
with centralized data systems, facilitating timely agronomic
interventions.

B. Robotic Monitoring Platform

To further automate and expand monitoring capabilities, a
robotic platform is envisioned that integrates multiple sensing
modalities. Autonomous drones will be employed for cap-
turing high-resolution canopy imagery, while soil-embedded
sensors will monitor localized microclimatic conditions to
detect subtle environmental variations influencing plant health.
All data streams will be unified within a cloud-connected
dashboard, offering real-time visualization, analytical tools,
and decision support for agronomists. This comprehensive IoT



Fig. 2. Plant Array System at Agrigeos

framework aims to deliver scalable and automated pest and
plant stress monitoring, marking a significant advancement in
precision agriculture.
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