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Abstract
The exploitation of Artificial Intelligence (AI) models shall always

be limited by their efficiency and effective fruition, from data prove-

nance, traceability, quality to deployability and evolvability of data

pipelines around such AI, collectively amounting to the Machine-

Learning operations (MLOps) discipline. Through industrial action

design research, this paper offers a preliminary view into the re-

quirements and design challenges posed by the aforementioned

discipline, starting from the functional and non-functional prob-

lems in our position, namely, a scale-up Small-Medium Enterprise

(SME) interested in providing an MLOps platform with commercial

and open-source components; our position draws from experiences

in developing said solution, with a focus on its data provenance,

traceability and quality-by-design. Our early prototype and its pre-

liminary implementation show promise in delivering efficient and

effective MLOps but our (limited) prototype scope calls for consid-

erable efforts and validation before its production-readiness. We

document and discuss the challenges and design principles learned

while driving the inception of the prototype, its current status as

well as the strengths and limitations of the proposed approach.
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1 Introduction
Artificial Intelligence (AI) has emerged as a powerful tool capable

of processing vast amounts of data and identifying complex pat-

terns that might be imperceptible to traditional analytical methods.

However, the practical application of AI in complex domains—e.g.,

climate change or industry-scale defect prediction—is not with-

out its challenges [7]. The effectiveness of AI models depends not

only on the sophistication of the algorithms but also on the effi-

ciency and robustness of the data pipelines—or MLOps—that forage

and deliver these models. Issues such as data provenance, trace-

ability, quality, deployability, and the ability to evolve MLOps are

critical non-functional requirements that must be addressed to

maximize the utility and value of delivering AI. Our approach—by

means of a design-scientific action research approach [6]—leverages

on a MLOps prototype to ensure that the critical aspects of data
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provenance, traceability, and quality are embedded by design, thus

enhancing the overall reliability and efficiency of delivering AI-

driven software. The prototype offered in this paper is an early

birds’eye view over the consolidated architecture we are targeting.

The end solution reflects a concrete MLOps platform prototype—

called chaM3Leon1—for further research and use by practitioners

and researchers alike.

2 Proposed Architecture
The platform’s architecture is a tailoring of the well-known lambda

architecture pattern [9] organized into seven principal layers (see

also Fig. 1):

• Batch Layer: Built on Spark Structured Streaming, this com-

ponent is dedicated to processing non-real-time data streams.

Specifically, streams originating from one or more Kafka
2

topics undergo a customizable preprocessing, with the pro-

cessed results saved on the Hadoop
3
Distributed File Sys-

tem (HDFS). In parallel, a process generates partial statistics

stored on a non-relational database, Cassandra
4
, further en-

hancing data accessibility for historical analyses [3].

• Speed Layer: This layer manages real-time data streams, cal-

culating partial statistics on the latest incoming data to pro-

vide rapid, though preliminary, insights. Like the Batch Layer,

the Speed Layer is based on Spark Structured Streaming. Un-

like the Batch Layer, it does not store data on HDFS, offering

instead immediate data access for applications requiring real-

time updates—a critical capability for continuous monitoring

scenarios [1].

• Harvesting Layer (Harvester): The Harvester is responsible

for gathering data from heterogeneous external sources in

cases where the Batch and Speed Layers are insufficient,

such as collecting historical data from external archives or

managing data formats unsuitable for the Batch Layer. Its

primary goal aligns with that of the Batch Layer: to pro-

cess and shape data for optimal consumption by machine

learning algorithms [8]. The prototype supports widely used

data formats in geoclimatic analysis, initially GeoJSON and

TIF/TIFF, and its ability to integrate with external APIs and

data services enhances its applicability across diverse use

cases.

• ML Layer: This layer handles the modeling phase, reading

data from HDFS that the Batch Layer and/or Harvester pro-

vide and using it as the basis for defining a machine learning

pipeline. This pipeline produces a model stored on HDFS,

while inference results are saved in Cassandra, thereby en-

suring that insights are readily accessible. Integrating ma-

chine learning into environmental data architectures has

been shown to improve predictive accuracy and support

1
https://github.com/Smart-Shaped/chaM3Leon/tree/public

2
https://kafka.apache.org/

3
https://hadoop.apache.org/

4
https://cassandra.apache.org/_/index.html
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Figure 1: an architectural diagram—elaborated following the guidelines for structuring UML-based component/connector views
of software architectures [4]—of our prototype.

near-real-time insights, essential in data-driven climate sci-

ence [5].

• Serving Layer: The Serving Layer aggregates data from Cas-

sandra, including summary statistics and machine learning

inferences. This layer’s purpose is to facilitate access to pro-

cessing results through exposed APIs. Providing accessible

outputs through APIs is crucial for integrating AI predic-

tions into decision-making processes, especially in climate

science, where users need straightforward access to data for

responsive action [2].

• Workflow Designer: An independent component, integrated

within the Serving Layer, designed to enable no-code cre-

ation of custom pipelines. Through exposed endpoints, the

Serving Layer collects user-defined inputs and translates

them into operational configurations for the platform. This

functionality facilitates the generation of tailored pipelines

regarding layer utilization, selection of machine learning

algorithms, and integration of diverse data sources. This

component remains as a baseline (in Fig. 3) in the prototyp-

ing stage, as the initial development phase prioritized the

platform’s core functional capabilities.

• API Gateway: Responsible for managing communication

with the architecture through APIs, the API Gateway is de-

signed to collect metrics from the various layers in operation.

Additionally, it offers the capability to trigger workflows gen-

erated by the Workflow Designer. These functionalities are

accessible via two types of exposed APIs: "secure APIs," acces-

sible externally and primarily used for retrieving inference

results; and "Infrastructure APIs," accessible from the Serv-

ing Layer, which are employed to supply metrics and define

workflows.
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