
Graph-based Resilience Analysis of Cloud-based
Microservices Applications

1st Lorenzo Goglia
Department of Engineering

University of Sannio
Benevento, Italy

logoglia@unisannio.it

2nd Eugenio Zimeo
Department of Engineering

University of Sannio
Benevento, Italy

zimeo@unisannio.it

Abstract—The ability of Smart Cities to deliver effective and
reliable services depends on the ability of their governing software
systems to guarantee a set of quality properties. In this paper,
we propose the use of graph-based runtime models and complex
networks theory to build a framework for resilience assurance.
In particular, the idea is to verify whether graph metrics can
be used as surrogate functions for resilience. Results obtained
through fault injection testing reveal significant correlation when
considering response time as figure of merit.

Index Terms—Models@runtime, Complex Networks, Central-
ity Metrics, Resilience

I. INTRODUCTION

The growing pervasiveness of ICT makes the performance
of modern Smart Cities heavily dependent on that of their sup-
porting software systems. The latter are required to properly
deal with the high dynamism characterising their operating
environment in a way so as to ensure resilience, i.e., to deliver
computational services by minimising and/or adequately tol-
erating the occurrence of software-related Quality of Service
(QoS) violations that may lead to degradation of domain
user services. Run-time models, a.k.a. models@runtime, have
proven to be a valid solution, allowing for continuous moni-
toring of the state of a system during its evolution over time
and enabling self-adaptation capabilities. In particular, graph-
based models and graph theory have been successfully used
to i) identify the most critical system components from the
point of view of the impact on the system working conditions
in the event of their failure; ii) predict network resilience;
and iii) prioritise scaling operations [1], [2]. The idea is
to model a software system with a property graph that is
augmented with outputs generated downstream the execution
of graph processing algorithms. In this extended abstract, we
report on the analysis of graph metrics to support resilience
assurance, specifically whether they can be used as surrogate
functions for a given figure of merit. In particular, we evaluated
a medium-sized microservice-based application (TrainTicket)
by conducting fault injection tests with the aim of verifying
the ability of graph metrics to identify potentially critical
microservices. The latter are indeed the software units that
usually compose the digital ICT layer supporting Smart Cities.
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Fig. 1: Framework for evaluating microservice resilience.

II. EVALUATING MICROSERVICE RESILIENCE

To carry out our study, we designed a conceptual framework
for evaluating microservice resilience, whose working steps
are reported in Figure 1. In particular, Step a) involves the
collection and processing of execution traces, which are gener-
ated via distributed tracing by submitting a reference workload
to the System Under Test (SUT), with the aim of building
a graph-based runtime model, called Workload-Application
(WL-A) model, that can be exploited to study and analyse
the SUT. Such a model is a graph whose nodes, edges, and
edge weights represent microservices, endpoint invocations,
and invocation frequencies, respectively. The second phase
b) involves the computation of graph metrics, which are
used to enrich the starting model. Specifically, we considered
Betweenness Centrality (BC), PageRank Centrality (PC), and
Katz Centrality (KC). In the third phase c), the SUT is
subject to load testing. This operation is repeated n + 1
times, where n is the number of microservices, in order
to obtain the response times of each microservice endpoint
either under normal (i.e., deploying the application with all
its microservices) and faulty (i.e., deploying the application
by removing one microservice at a time) conditions. Finally,
in the fourth phase d), a correlation analysis is performed to
check whether microservices with a higher negative impact
on application response time also have high values for one or
more of the selected metrics.
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(a) Correlation plot between IS and BC computed
on static graph (dCor2 = 0.34 with dbs;
dCor2 = 0.52 wout dbs).
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(b) Correlation plot between IS and BC computed
on dynamic graph (dCor2 = 0.45 with dbs;
dCor2 = 0.72 wout dbs).
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(c) Correlation plot between IS and PC computed
on static graph (dCor2 = 0.39 with dbs;
dCor2 = 0.37 wout dbs).
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(d) Correlation plot between IS and PC computed
on dynamic graph (dCor2 = 0.40 with dbs;
dCor2 = 0.41 wout dbs).

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

KC

0

200

400

600

800

1000

1200

1400

1600

IS

(e) Correlation plot between IS and KC computed
on static graph (dCor2 = 0.73 with dbs;
dCor2 = 0.66 wout dbs).
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(f) Correlation plot between IS and KC computed
on dynamic graph (dCor2 = 0.57 with dbs;
dCor2 = 0.50 wout dbs).

Fig. 2: Correlation plots. Red points refer to microservices hosting databases.

III. CORRELATION ANALYSIS

For each configuration, the average response time RT
for the reference workload is computed, weighted by the
endpoint invocation frequency. Subsequently, for each faulty
microservice, an impact score (IS) is computed by dividing
the value of RT obtained in the specific faulty setup by that
obtained in the nominal setup. IS has a lower bound equal to
1. In fact, when the impact of the removal of a microservice
is not significant, the individual response times are similar to
those obtained in the nominal condition. Conversely, when the
impact is significant, IS increases away from 1. In the worst
case, i.e., when all requests in the workload involve a call to
any endpoint of the failed microservice, response times are all
equal to K times their respective maximums in the nominal
setup, where K is a large constant introduced to properly
deal with response times collected during fault injection1.
As for graph metrics, BC, KC and PC, are calculated both
on the WL-A model and a model built by considering only
structural static information. Specifically, they are computed
on a graph built from the analysis of the source code. In
this case, nodes, edges, and edge weights represent the mi-
croservices, the dependencies between them, and the number
of such dependencies, respectively. To verify the existence
of correlation, we plotted IS against graph metrics and we

1In faulty setups, the response times of removed microservices should
be infinite. However, due to timeout mechanisms, they may be comparable
to those of working microservices. This depends on the complexity of the
underlying operations and means that it is not necessarily true that faulty
microservices always exhibit higher response times.

calculated the distance correlation (dCor2) as performance
indicator to determine the degree of dependence between the
score and the metrics (see Figure 2). In particular, dCor2

ranges from 0 to 1: dCor2 = 0 indicates independence, while
dCor2 = 1 suggests strong linear or non-linear dependence.
As it can be observed, BC seems to be the most effective one
for analysing application logic components, especially when i)
the WL-A model is considered and ii) microservices hosting
databases (those coloured in red) are not considered. This
behaviour is motivated by the way the different metrics are
defined. BC targets bridging components, i.e., nodes that are
pointed by and that points to other nodes, in a finer grain
than PC and KC, which instead are more focused on pointed
components. In any case, the importance of having models
efficiently populated with runtime information emerges. In
fact, all metrics perform better (or similarly, as in the case
of KC) when computed on dynamic rather than static graphs.
These encouraging results confirm the possibility of using
graph theory to monitor the behavior of cloud-native and
microservices-based applications with the aim of preventing
them from entering bad states, thus ensuring continuity in the
delivery of Smart City services.
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