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Abstract—This extended abstract introduces a strategy for
urban environmental mapping that leverages mobile sensing and
interpolation techniques across the temporal dimension. The
framework interpolates sparse, time-staggered measurements to
generate full-area maps, improving spatial coverage without
the need for dense sensor deployment. With temporal-aware
strategies, we improve estimation in unsampled areas and times.

Index Terms—mobile sensing, temporal interpolation, moni-
toring, Edge-Fog-Cloud.

I. INTRODUCTION

The growing complexity of smart cities has led to an
increasing reliance on IoT devices to gather georeferenced
data for key urban applications, such as traffic management,
environmental monitoring, and emergency response.

In mobile sensing scenarios, data collection points con-
tinuously shift due to vehicle movement. Only some parts
of the city are sampled during any particular time window.
Mobile sensing, in contrast to static sensor networks, requires
dynamic techniques that adjust to changing spatial coverage.
Adaptive interpolation methods that can manage irregular
temporal sampling, forecast values in unsampled regions, and
integrate previous data to overcome this difficulty are needed.

In our case, IoT nodes are installed on public utility
vehicles. To better understand the time impact on mobile
sensing, Fig. 1 illustrates the collected samples considering the
first, second, third, and fourth hours of the waste collection
vehicles’ shifts. The spatial coverage changes; for example,
during the 4th hour, few data samples are available.

In this abstract, we address the integration of the time
dimension into interpolation models, emphasizing the impor-
tance of capturing how environmental parameters evolve over
time in urban settings to augment the spatial coverage. We
propose strategies that adapt to the irregular and asynchronous
nature of mobile data collection, accounting for the changing
spatial coverage over time due to sensor mobility. We explore
how the use of historical information can improve interpolation
accuracy in unsampled regions and time slots. Experimental
results confirm that incorporating the temporal dynamics im-
proves the reconstruction of highly variable pollutants.

II. METHODOLOGY

By integrating temporal modeling with spatial mesh gener-
ation and leveraging historical data when necessary, we can
estimate environmental parameters in unsampled regions with
improved accuracy. The ST-product [1] approach performs lin-
ear temporal interpolation between consecutive measurements
and then applies spatial interpolation at each time slice.

The overall process is schematized in Fig. 2. The spatial
domain is first discretized into a regular grid of small cells,
with dimensions of approximately 100 meters per side. Each
cell acts as a localized spatial unit where measurements are
collected over time whenever a mobile sensor (e.g., a vehicle)
traverses the area. As a result of the irregular movement
patterns of the sensors, the temporal sampling within each
cell is sparse and unevenly distributed. To reconstruct a con-
tinuous temporal profile for each cell, interpolation techniques
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Fig. 1: Problem statement. Different colors refer to different vehicles.
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Fig. 2: Methodology overview

Fig. 3: Real and temporal interpolated CO2 measures

are employed to generate regularly sampled time series (red
lines). Interpolation is applied selectively; it is performed only
when sufficient temporal coverage exists within a reasonable
proximity, thereby minimizing the risk of introducing artificial
trends or erroneous estimates. This procedure substantially
increases the number of spatial locations with available ob-
servations at each time step (e.g., tx), effectively achieving a
form of temporal data augmentation (circles with red boundary
in the figures). The resulting dataset exhibits a much higher
spatial density of measurements compared to the original
sparse observations. Consequently, when spatial interpolation
methods such as Kriging or IDW are subsequently applied,
the denser and more uniformly distributed dataset leads to a
significant improvement in the accuracy and reliability of the
reconstructed spatial fields. This enhanced framework supports
a more precise characterization of the underlying spatiotem-
poral dynamics of the phenomenon under investigation.

III. EXPERIMENTS

We conducted a drive through the city of Benevento with a
CO2 and temperature sensor securely mounted on the roof of

Fig. 4: Spatio-temporal CO2 interpolation

a vehicle to ensure undisturbed data collection. Following the
methodology described, we applied temporal interpolation to
the recorded measurements. This way, at a specific timestamp,
we obtained values for different spatial positions, as shown
in Fig. 3. We then used these temporally enriched points to
perform spatial interpolation, resulting in the environmental
map presented in Fig. 4.

We used two instrumented vehicles, one to generate the
interpolated map and the other as ground-truth to calculate the
error between the interpolated and the measured value in the
locations it passed through. The temperature error is very low.
In contrast, CO2 concentrations can vary significantly over
short time scales and spatial locations due to factors like local
emissions and ventilation, leading to a higher error, ∼ 7%.
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