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Abstract—The increasing deployment of distributed sensor
networks for urban monitoring introduces challenges in data
interpolation. This extended abstract proposes a Fog-based in-
terpolation and Cloud aggregation framework that distributes
computational tasks across Fog and Cloud layers. This way,
we enhance the efficiency of smart sensing applications. Our
approach exploits localized spatial interpolation methods directly
at Fog nodes, allowing for reduced computation at the Cloud,
which remains only in charge of merging the interpolated meshes.

Index Terms—interpolation, Fog computing, Cloud integration,
Edge-Fog-Cloud, geographical data.

I. INTRODUCTION

Air quality monitoring is a crucial component of smart
cities, enabling countermeasures and contributing to improved
urban livability. Building a detailed environmental map would
traditionally require a dense network of static sensors across
the entire urban area, which can be cost-prohibitive. To address
this, we propose a cost-effective framework that leverages
data from mobile sensors mounted on utility vehicles. These
sensors transmit data via LoRaWAN, a low-power wide-area
communication protocol suitable for covering large urban
regions. Once the data is collected at the Fog layer, accu-
rately reconstructing a continuous and reliable environmental
map from discrete and non-uniform measurements requires
the application of advanced interpolation techniques capable
of handling spatial sparsity, ensuring that the resulting map
captures the underlying environmental patterns while main-
taining high accuracy and responsiveness for real-time urban
monitoring. Typically, the computational complexity of these
techniques is cubic with respect to the input. For this reason,
we distributed the computation across multiple Fog nodes,
each handling local data interpolation independently. Only
a lightweight aggregation step is performed in the Cloud,
enabling faster and more scalable processing tailored to real-
time urban monitoring needs.

II. METHODOLOGY

The proposed approach leverages distributed resources in
the smart city across multiple Fog nodes. In this way, the
system decomposes the problem, ensuring scalability and
reducing latency using a hierarchical three-layer system.

In the Edge layer, multiple sensors on vehicles collect geo-
referenced environmental data. IoT devices collect information

and handle data transmission to the Fog; in our configuration,
LoRaWAN communication was employed.

In Fog, the collected data are interpolated. Inverse distance
weighting (IDW) [1] is a deterministic interpolation method
where nearby points have more influence on the estimated
value than distant ones. Radial basis function (RBF) inter-
polation [2] models values using radial functions centered at
known points. The interpolation is performed independently
on each Fog server, resulting in multiple interpolated meshes
corresponding to the different coverage areas of the gateways.
Moreover, the Fog computes a boolean matrix to track the
position (lat, lon) where real measurements are available and
a weight matrix using the inverse of the Euclidean distance
transform to the nearest nonzero element for each point to
support the Cloud’s aggregation phase.

In the Cloud, the global mesh is generated, providing
a comprehensive view of the urban environment. In case
of overlapping areas, some aggregation technique must be
applied. We proposed four different aggregation techniques:

• Average Aggregation (A): computes the simple average
of all available values for each position.

• Pairwise Average Aggregation (PA): iteratively merges
two interpolated maps at a time by averaging correspond-
ing cells using a simple mean.

• Weighted Average Aggregation (W): calculates the
weighted mean of values, where each value is assigned a
specific weight from the weight matrix.

• Pairwise Weighted Average Aggregation (PW): combines
two maps at a time using a weighted mean on each cell
and proceeds iteratively, updating the weighted matrix.

The pairwise versions have been proposed to enable early
computation. As soon as the first two meshes arrive in the
Cloud, the aggregation process can begin immediately, without
waiting for all meshes to be available. This approach enhances
efficiency by progressively integrating new data, reducing
latency, and improving real-time processing performance.

III. EVALUATION

Our evaluation is based on the city of Benevento, Italy,
where a dedicated coverage analysis was conducted to de-
termine the optimal placement of five LoRaWAN gateways
to ensure full urban coverage. Based on these positions, we
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Fig. 1. Proposed methodology

Fig. 2. Mesh computed with WA aggregation

TABLE I
COMPUTATION TIMES [S]

Interpolation ϕcloud min(ϕk) max(ϕk) µPA µPW µA µW

IDW 0.821 0.156 0.236 1.941 0.440 1.207 0.887
RBF-linear 46.314 3.004 10.029 11.734 10.233 11.000 10.680
RBF-tps 87.870 5.214 16.395 18.100 16.599 17.366 17.046
RBF-cubic 44.652 1.745 8.931 10.636 9.135 9.902 9.582

defined five circular areas with a 2 km radius to approxi-
mate each gateway’s coverage. While real-world coverage is
not perfectly circular due to urban morphology and signal
propagation constraints, this approximation does not affect
the validity of our analysis. We used actual waste collection
vehicle routes within the city and intersected them with land
surface temperature data provided by the Landsat 8 TIRS
satellite [3]. This allowed us to simulate mobile temperature
data collection. Using the predefined gateway coverage zones,
we processed data points separately at the Fog level to generate
five interpolated meshes, which were then sent to the Cloud
for final aggregation. Fig. 2 shows the final temperature map
using WA aggregation.

To evaluate the proposed methodology, we conducted a

TABLE II
INTERPOLATION RMSE

Method IDW RBF-linear RBF-tps RBF-cubic

Cloud 2.814 2.447 2.537 3.529
Fog 1.815 1.597 1.953 3.089
PA 2.272 2.083 2.304 3.201
PW 2.316 2.101 2.321 3.369
A 2.263 2.080 2.302 3.195
W 2.211 2.024 2.207 3.070

latency and accuracy analysis.
We distinguished latency into the following components: ϕk

represents the k-th Fog’s time to perform local interpolation. η
denotes the time required for computing meshes aggregation
in the Cloud. µ is the time for the complete distributed compu-
tation, defined as µ = max(ϕk)+η. Finally, ϕcloud represents
the time for the Cloud to perform a single global interpolation
on all data in a centralized manner. Tab. I compares ϕcloud with
the times µ for each aggregation technique, which includes the
time required for the slowest interpolation at the Fog level plus
the time needed to merge all the meshes in the Cloud.

Tab II shows the Root Mean Squared Error for all the tested
interpolation techniques, performed directly in the Cloud with
all the data, and in Fog. Finally, it shows the global results
with the different aggregation techniques.

IDW is the fastest method, but it suffers from higher error
rates, so RBF with a linear kernel is a more balanced choice.
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