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Abstract—Smart cities generate massive volumes of heteroge-
neous data from sources such as traffic systems, environmental
sensors, public transport, and citizen applications. Ensuring the
quality of this urban data is crucial for reliable analytics, service
optimization, and policy-making. However, data validation in
smart city systems remains largely manual, error-prone, and
non-scalable due to frequent schema evolution and variable data
standards across departments.

In this paper, we utilize the DQGen framework for automating
data quality validation in smart city environments. Leveraging
metadata extracted from open urban datasets, the framework
maps standard quality dimensions—such as completeness, con-
sistency, validity, and timeliness—to executable validation rules
using Great Expectations. The generated scripts can be integrated
into city dashboards or batch pipelines, allowing for continuous,
transparent, and repeatable validation across evolving datasets.

We validate the framework using datasets from a municipal
open data portal, which include traffic flow, air quality, and
public transportation usage records.
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I. INTRODUCTION

Smart cities rely on diverse and dynamic datasets generated
by traffic sensors, environmental monitors, mobility platforms,
and citizen applications. These datasets enable a wide range
of services, including real-time traffic management, pollution
monitoring, and urban planning. However, the increasing het-
erogeneity, volume, and velocity of urban data pose serious
challenges to ensuring data quality [1]. Inconsistent formats,
missing values, schema drift, and poorly validated fields can
lead to inaccurate analytics, suboptimal decisions, and reduced
citizen trust [2] [3].

Traditional data validation in smart city systems is often
manual and fragmented across departments or vendors [4],
leading to inefficiencies and non-reproducible quality assur-
ance processes. To address this, we adopt DQGen, a metadata-
driven framework designed initially for data-intensive applica-
tions, and adapt it for urban data environments. The DQGen
system automates, scales, and standardizes data quality valida-
tion for smart city datasets by utilizing metadata and mapping
standard quality dimensions to actionable rules.

II. BACKGROUND

Urban data is typically structured in relational or semi-
structured formats and is updated at varying temporal frequen-
cies. Ensuring its quality is critical for operational systems
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(e.g., traffic control), predictive analytics (e.g., pollution fore-
casts), and citizen-facing dashboards.

While rule-based validation tools such as Great Expecta-
tions (GE) [5] offer a powerful foundation for data profil-
ing and testing, they require manual configuration, limiting
their applicability across evolving schemas and large datasets.
Frameworks like DQGen automate this process by:

1) Extracting metadata (e.g., schema structure, data types),

2) Mapping quality dimensions (e.g., completeness, consis-
tency) to validation rules, and

3) Generating executable validation code in Python using
GE.

The original DQGen framework showed high effectiveness
in industrial telecom datasets. This work explores its applica-
bility in smart city data contexts, where schema evolution and
multi-source integration are prevalent.

III. METHODOLOGY
A. DQGen Framework

DQGen framework automates data quality validation for
smart city datasets from open data portals, which are typically
tabular and cover domains like mobility, environment, and
public services.

B. Metadata Extraction

The process begins with the automatic parsing of dataset
metadata. DQGen supports structured input formats (e.g.,
CSV files or relational database exports) and extracts schema
information such as:

o Table and column names

« Data types (integer, float, string, datetime, etc.)

o Nullability and primary key constraints (if available)

This metadata forms the basis for defining applicable val-
idation rules in a scalable and schema-aware manner. For
example, fields inferred as identifiers or time stamps are
automatically assigned specific quality dimensions.

C. Dimension Mapping

Once metadata is extracted, the framework maps dataset
columns to a set of configurable data quality dimensions, each
targeting common integrity issues in urban data systems. These
dimensions ensure robust validation across diverse domains:

1) Completeness verifies that mandatory fields (e.g., times-
tamp, station_id) are populated, which is essential for
accurate analysis and downstream processing.



2) Uniqueness ensures that key identifiers, such as sen-
sor_id or record_id, do not contain duplicates, prevent-
ing over-counting and ensuring referential integrity.

3) Validity checks whether values conform to expected data
types or domains, such as enforcing that datetime fields
are properly formatted or numeric fields do not contain
text.

4) Timeliness assesses whether temporal values fall within
plausible or predefined time windows, helping detect
stale data or misaligned logging intervals.

5) Consistency enforces logical coherence across fields,
such as ensuring arrival_time occurs after depar-
ture_time, or that calculated durations match timestamp
differences.

This mapping process allows DQGen to generate targeted
and reusable validation rules tailored to the semantics of urban
datasets.

This mapping process is rule-driven but requires no man-
ual scripting. Rules are chosen based on column semantics
inferred from naming conventions or external profiles.

D. Code Generation

After mapping, the framework generates Python validation
scripts using the Great Expectations (GE) library. Each script
is customized based on:

o The table and column structure

o The mapped quality dimensions

o Templated GE expectations

For example, a column mapped to ‘“completeness” will
be checked using GE’s expect_column_values_to_not_b_null
function, while a uniqueness constraint triggers
expect_column_values_to_be_unique. These expectations
are filled into pre-defined script templates with placeholders
for schema-specific details.

The final scripts can be scheduled as batch jobs or integrated
into continuous data ingestion pipelines. Outputs include:

o Human-readable validation summaries

o JSON-based validation reports

o Alerts for failed expectations

E. Case Study
We selected three datasets from a municipal open data portal

[6]:

o Traffic Flow (vehicle counts per hour and direction)

o Air Quality (PM2.5, NO2, CO2 measurements)

o Public Transport Usage (bus stop entries/exits)

Each dataset underwent metadata extraction, followed by
the generation and execution of validation rules via DQGen-
Smart. The output included readable validation reports and
alerts for failed expectations.

IV. RESULTS

To evaluate the applicability of DQGen in the smart city
context, we conducted a pilot study using publicly available
datasets from a municipal open data portal. Three datasets
were selected from distinct urban service domains:

o Traffic Flow Dataset: Hourly vehicle counts from road
sensors, segmented by direction and location.
o Air Quality Dataset: Periodic pollutant readings (PM2.5,
CO2, NO2) from fixed monitoring stations.
o Public Transport Usage Dataset: Daily passenger counts
at bus and tram stops, recorded by fare collection systems.
Each dataset was subjected to the full DQGen
pipeline—from metadata extraction to script generation
and rule execution.

TABLE I
COMPARISON OF MANUAL APPROACH AND DQGEN FOR SMART CITY
DATASETS
Metric Manual Approach DQGen
Average validation script setup 1-2 days i 15 minutes
time

Required fields with complete-
ness checks

Schema adaptability
Consistency of rule logic

“65% coverage 100% coverage

Automatic
High

Manual rework
Medium

We evaluated DQGen against manual validation approaches
typically used by data engineering teams. As summarized in
Table I, the framework consistently generated executable GE
scripts in under 15 minutes across all datasets. These scripts
produced detailed validation reports in both HTML and JSON
formats, highlighting failure rates and providing descriptive
summaries for each expectation.

The generated scripts were deployed in a daily batch work-
flow, producing validation reports and automated alerts for
failed checks, which enabled prompt issue resolution by both
engineers and planners.

V. CONCLUSION

This work adapts the DQGen framework to smart city
datasets, automating validation script generation based on
metadata and quality dimensions. It reduces manual effort
and improves consistency across diverse urban data. Real-
world results demonstrate its scalability and transparency.
Future directions include support for semi-structured data and
domain-specific validation.
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