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Abstract—This work proposes a public transport multimodal
trip recommendation methodology that considers user prefer-
ences while reducing public transport infrastructure congestion.
The system adheres to Behavior-enabled IoT (BeT) principles.
BeT is a novel architectural paradigm for cyber-physical self-
adaptive Smart Cities applications to balance QoE and QoS.

Index Terms—Smart Mobility

I. INTRODUCTION

Current multimodal public transportation applications
mainly rely on user preferences (travel time, distance, habits,
service cost) for route suggestion, often ignoring the conges-
tion infrastructure stress [1], [2], [3], [4]. This work presents a
framework for such a system, leveraging real-time congestion
data and user-specific criteria to optimize travel experience and
improve load distribution. This solution aligns with Behavior-
Enabled IoT (BeT) principles [5] for balancing user experience
(QoE) and service quality (QoS) through continuous adapta-
tion. This work demonstrates the applicability and advantages
of the BeT paradigm in smart mobility, considering the real-
world use case of Lyon’s public transport network.

II. BET PARADIGM AND MODELING PROCESS

A BeT system involves a human agent and a system agent
interacting through a QoE-QoS balancer. Each agent uses a
sensing interface to update its behavioral model (user interac-
tions for the human agent, cyber-physical data for the system
agent). The balancer uses these models to optimize QoE
and QoS. Outputs include actuating operations (modifying
the physical process) and user suggestions (via a recom-
mending interface to influence behavior and reduce system
pressure). The BeT modeling process for designing architec-
tures includes: 1) QoE/QoS Analysis to identify stakeholders,
translate their needs into metrics or constraints, and analyze
trade-offs. 2) Behavior Modeling and Balancing Strategy
Definition to identify observable properties needed to extract
QoE/QoS metric and constraints, and controllable resources
(e.g. smartphones or on-board/in-station validation machines);
to develop behavior models to predict human and system be-
havior, and creating a balancing strategy to optimize QoE/QoS
within constraints, defining action outputs and recipients. 3)
BeT Concrete System Design to translate the architecture into
specific components with defined responsibilities and tailor the
framework to the application scenario.
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Fig. 1. BeT-driven architecture for public transport recommendation systems

III. BET-DRIVEN MULTIMODAL TRANSPORT SYSTEM

The concrete BeT architecture is composed as follows.
The human agent receives the user’s Origin-Destination (OD)
query, for which the user seeks a recommendation. In addition,
the Sensing interface is responsible for collecting all user travel
data to compute the QoE metrics. Our Human behavioral
model is a probabilistic profile of user preferences based
on travel time, frequency, preferred routes, and modes, ob-
tained by mining the validation data. By analyzing interaction
frequency within 10-minute intervals at specific locations,
the model calculates a Behavior Index (BI), representing the
proportion of a user’s visits during that time, thus reflecting
their habitual commuting patterns. Other QoE metrics used to
evaluate a path are travel time and the number of line changes.
At the same time, the system agent collects the public transport
network data to feed the related congestion model. The latter
uses a 5-minute moving average to estimate crowd levels on
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Fig. 2. Approach Comparison for Trams
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Fig. 3. Approach Comparison for Metros

public transport vehicles. The Congestion Index (CI) is the
ratio of passengers on a vehicle to its capacity. The QoE-
QoS balancer comprises two modules, a route planner and a
route evaluator. The route planner is responsible for gener-
ating multiple candidate routes exploiting different modes of
transportation (buses, trams, and metro). The route evaluator
filters routes through a two-step process: first, identifying less
congested options (prioritizing QoS), and then ranking the
remaining ones based on BI, travel time, and line changes
(promoting QoE). The route with the highest overall score is
then suggested to the user. The suggestion is transmitted to the
end-user through the recommending interface. We extended
the MnMS1 traffic simulator to validate the application of the
BeT architecture on this scenario.

IV. EXPERIMENTS AND RESULTS

We are conducting ongoing experiments on public transport
in Lyon (FR) using November 2019 validation data to repre-
sent typical congestion. After cleaning the data, OD trips were
inferred by applying heuristics. We chose the morning peak
(07:00-09:00 AM) for testing, with an average departure rate
of 624 every 30 seconds. QoE-driven approach selects routes
that satisfy user preference, travel time, and line changes.
The Balanced approach implemented the proposed QoE-QoS
adaptation strategy. QoS-driven suggests the less congested
route. The simulations tracked a CI value for each vehicle
at every time step. To compare two approaches j and k, we

1https://github.com/licit-lab/MNMS
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Fig. 4. Approach Comparison for Buses

defined a score ρj,k =
∑

v∈V γv
j,k∗η

v
j,k

NV
using p-value (π) and

effect size (η) from a Wilcoxon test on paired CI at vehicle
stops, considering the ’less than’ alternative hypothesis. In
particular, γv

j,k = 1 if ((ηvj,k > 0 ∧ πv
j,k ≤ 0.05) ∨ (ηvj,k <

0 ∧ πv
j,k ≥ 0.95)) else 0. A significant p-value and positive

effect suggest one approach reduces congestion; conversely, a
significant p-value and negative effect with swapped operands
indicate the opposite. The score ρj,k is normalized by the
number of compared vehicles (NV ). We score performance per
vehicle type (bus, metro, tram) to see strategy impacts on each,
Fig.2, Fig.3, Fig.4. As expected, the QoS-driven approach is
the most effective, while the balanced approach provides an
acceptable middle ground. The QoE-driven approach performs
worse. The strategy’s impact varies by vehicle class, with
trams significantly affected and metros slightly affected. The
concentrated demand for metro and tram services in the city
center obfuscates the impact of the strategy on the bus network
(280 lines), which caters to a wider area and is less popular.
The findings indicate that prioritizing congestion in public
transport strategies effectively reduces infrastructure stress,
with the Balancing approach showing as the best compromise.
It is important to note, however, that this validation focused
on the methodology itself, rather than on a complete real-
world system. As such, aspects like the dynamic evolution
of travel demand, system scalability, and data freshness were
not considered and remain open for future research and
implementation.
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